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Abstract. We present a dynamical study of the instabilities that ensue when a relatively large
magnetic field is applied suddenly across a sample of smectic liquid crystal held between parallel
plates. We consider the case when the smectic layers are initially aligned parallel to the bounding
plates, and the applied field is also parallel to the plates but normal to the initial average molecular
orientation within the layers. Our linearized dynamical analysis for this situation confirms the
prediction of static theory that there is a threshold field beyond which a Freedericksz transition
occurs. Additionally, however, it is shown here that there is a second threshold beyond which a
spatially periodic (rather than homogeneous) transition occurs, leading to a striped pattern; such
patterns are likely to be of concern in the construction of smectic display devices. For both
types of instability a bulk velocity (‘backflow’) is induced.

Both strong anchoring and weak anchoring are considered, and expressions are obtained for
the threshold fields and for the growth rates in the various cases. Attention is focussed on the
smectic Gy phase, though analogous results should be valid for more general smectic phases.

1. Introduction

The commercial development of electro-optical devices [1] has provided strong motivation
for an extensive study of the director dynamics in smectic C liquid crystals over the
past decade. While earlier investigations assumed that there was no coupling between
flow and the director orientation, a recent paper by Lesliaal [2], which proposes a
constrained dynamic continuum theory for smectic C liquid crystals, has enabled more
recent studies to incorporate such a coupling into their analyses. In particular, backflow
effects upon the switching behaviour of surface stabilized ferroelectric liquid crystal cells and
the orientational relaxation in smectic C liquid crystals have been examined by Carlsson
et al [3] and Leslie and Blake [4], respectively. Both these investigations assumed that
orientation patterns after any transition are homogeneous in the directions parallel to the
cell plates. However, it is well known from experience in nematic liquid crystal theory
that such transition patterns may be periodic. In this event the initial growth rate of a
periodic transition is greater, and hence the switching time shorter, than that associated with
the corresponding homogeneous transition pattern. Hence our aim here is to investigate
the possible occurrence of periodic instabilities in smectic C liquid crystals in a relatively
simple experimental situation.

In this paper we examine an experimental arrangement similar to that considered by
Ciaponi and Faetti [5] for nematic liquid crystals. Here a smectic C liquid crystal is confined
between two large parallel plates with the smectic layers uniformly aligned everywhere
parallel to the plates and subjected to a relatively large uniform magnetic field suddenly
applied parallel to the smectic layers. After giving a brief outline of the continuum theory
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in section 2, we proceed to formulate the stability problem in section 3. Linearizing the
continuum equations about the static equilibrium state, we seek solutions for the velocity
and director fields that are spatially periodic; this reduces the mathematical problem to one
of solving a pair of coupled second-order linear differential equations subject to appropriate
boundary conditions. Adopting a Fourier series method of solution previously employed by
Stein [6], we show that there exist critical valugsandh; of the (reduced) magnetic field
strengthi that mark the onset of homogeneous and periodic instabilities, respectively, in
smectic Gy liquid crystals. We predict that (i) it < A then the initial uniform alignment

is stable, (ii) ifh;, < h < h{ then a homogeneous transition will occur, and (iiifit A

then a periodic transition will occur. Analytic expressions are derived for these threshold
fields, results for strong anchoring being given in section 4 and those for weak anchoring
in section 5. The paper concludes with a brief discussion of the results in section 6.

2. The continuum equations

In this section we briefly summarize the continuum equations governing the behaviour of
smectic C liquid crystals proposed by Leséeal [2]. Assuming that the smectic layers
consist of uniform planes with a fixed angle of tiltbetween the molecular alignment and
the layer normal, their constrained continuum theory introduces two orthonormal vectors to
describe the smectic layered configuration. One is the unit nosimalthe layers and the
other is a unit vectoe that is parallel to the layers and describes the direction of the tilt of
the molecular alignment. In a defect-free samgland ¢ must satisfy the constraints

a-a=c-c=1 a-c=0 curla =0. (2.1)

With the assumption that the material is incompressible the additional relevant equations
for determininga and ¢, together with the velocity vector field, are, in Cartesian tensor
notation, the constraint

Vi, = 0 (22)
the linear momentum equation
pi = =P+ &aji + &cii +1ij (2.3)

and the angular momentum equations

ow ow
(Ba' ) = a + &' + Gi +eijbr,j +vai+xkci =0 (2.4)
i,j/,j i
and
ow aw
(80 ) ~ e + 8 +Gi+«ka;+7tc; =0 (2.5)
i.j/,j i
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where
p=—Hntp+W  iy=i3+i
t,; = woDij + ma, Dyaia; + ua(Dfa; + Dfa;)
+M3ch;cicj + wa(Djc; + Dj‘fc,-) + u5ch;(aicj +ajc;)
+A1(Aja; + Aja;) + A2(Cicj + Cjci) + Azcp Ap(aicj + ajc;)
+x1(Dfc; + Djc; + Diaj + Dja;)
+icafa, Dy (aicj + ajci) + 2a, Dya;a;)
—i—/cg{c,,D;(amj +ajc) + ZapD;cicj} + 11(Cia; + Cja;)
+12(Aicj + Ajci) + 2tac, Apaia; + 2tac, Apcicy
f;s = h(Dfa; — Dia;) + r2(Djc; — Dic;) + hacp Dy (aicj — ajci) (2.6)
+Aa(Aja; — Ajaj) + As(Cic; — Cicj) + AecpAp(aici — ajc;)
+11(Dfc; — Dic;) + wa(Dja; — Dja;) + t3a, Dy (aicj — a;c;)
+tac, Dy (aicj — ajei) + ws(Ajei — Aicj + Cja; — Ciaj)
g = —20..D} + rzcp Dyci + haA;i + hecpApci
+12D; + t3a, Dyci + tacy Dyci + t5Ci)
g = —2(A2Dj + AsC; + 1D} + 154,)
D} = Djja; D; = Djjc;j 2D;; = vij +vj;
A; = a; — Wija; Ci =¢ — Wije 2Wij = v j —vj.
Herep is the constant density;;, is the alternator and a superposed dot indicates a material
time derivative. p, y, t andk are arbitrary scalar functions arglis an arbitrary vector
function arising from the constraints (2.1)—(2.2), whi% and G¢ denote any generalized
external body forces acting ari, represents the energy per unit volume due to the presence

of any electric or magnetic field. Of particular importance to this paper are those forces
associated with an applied magnetic fidtf, which take the form

G = xa(H - n)H cosx G = xa(H - n)H sina 2.7

where x, denotes the anisotropic part of the magnetic susceptibility (assumed constant), and
n denotes the average molecular orientation, with= a cose 4+ csine. Also W is the
elastic stored-energy per unit volume, taking the form [2, 4]

2W = K{(a;1)* + K{(ci.1)* + K& (ciai jc;)? + Ksci jeij + K5ci jcicikcr
+2K§a,",’(Cjclj,ka) + ZKZ.C,"J‘CJ‘C[.kak + ZKfL.Ci’i(Cjaj’ka) + ZKSCCI,",‘CJ"].
(2.8)

The theory thus provides 16 equations (2.1)—(2.5) to determine the sixteen varighlgs
Vi, ﬁia PV, K andf

3. Formulation of the problem

We consider a sample of smectic liquid crystal confined between two horizontal flat plates
of large extent, and we choose Cartesian coordinate axes so that the upper and lower plates
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occupy the planes = 4 andz = 0, respectively. The material is taken to be stationary
initially, with the smectic layers parallel to the bounding plates and with the direction of
the tilt angle initially aligned uniformly in thec-direction. This state corresponds to the
simple static solution

v=0 a=0,0,1) c= (10,0 »=po (3.1)

of (2.1)—(2.5),po being a constant.
We wish to consider the effect of applying a magnetic field of the form

H = (0, H,0) (3-2)

to this arrangementt being a prescribed constant. It is well known from the static theory
that, when there is strong anchoring at the plates, the solution (3.1) becomes unstable if
H is increased quasi-statically through the critical vallg = (K5/xa)Y2(r/d sine), a
Freedericksz transition then occurring. Here, however, we are interested in the situation
when a magnetic field (3.2) witHl > H. is appliedsuddenlyacross the sample. We restrict

our attention to the dynamics associated with the onset of the ensuing instability, and seek
solutions of the form

v=(093(x,z,1),0) c= (1 ¢, z,1),0) a=(0,0,1) (3.3)

with p = po + p, where 9, é and p and their derivatives are sufficiently small that
their products and powers may be neglected. The constraints (2.1) and (2.2) are satisfied
identically, while a linearization of equations (2.3) and (2.5) yields « = 0 andp = f(¢),
together with the equations

POy = md. + (k1 — T2 — 71 + T8) Dz + N2Dex + N3Pix + (71 — T5)Pr: (3.4)
K5.. + 2K + (K + K5)drr — n3dy + (t5 — 71)D. — 245, + xa H?Si’ adp = 0
(3.5

where
201 = po+ 2 — 201+ Ag 202 = po+ g — 202 + s N3 = A2 — As. (3.6)
These equations are to be solved subject to the no-slip conditions

9(0)=0d)=0 (3.7
and, for strong anchoring,

$(0) = ¢(d) =0. (3.8)
The following inequalities (given in [7] and [8]) will prove useful later:

n =0 220 A5 >0 K;>0 K3 > 0. (3.9)

Itis clear from equations (3.4), (3.5) that there is no solution for whieimdd are either
purely even or purely odd functions about the plane %d. This lack of parity means that,
although progress could be made in solving the problem analytically, the results would be so
unwieldy that they would probably be difficult to interpret usefully. One could, of course,
rely on a numerical method of solution, but this is hampered by the fact that values for
the elastic and viscous material parameters have not yet been determined experimentally.
(Indeed observation of transition states provides one possible means of measuring such
parameters, so it would be useful to have available theoretical predictions with which the
experiments may feasibly be compared.) To make progress analytically and to get some
insight into the qualitative behaviour of smectic C materials we now restrict our attention to
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one particular subclass of these materials, namely the smegtiq@id crystals described

by Brand and Pleiner [9]. For these materials the parameéfgrk{¢, K5¢, x; andt; (for

all values ofi) are identically zero, so equations (3.4), (3.5) are simplified considerably.
Introducing dimensionless variabl&s 7, 7 and V defined by

d d fhsd? VrKS
x=Fs =zt =2 5o tTo2 (3.10)
b4 b1 Kin Asd
we now seek periodic solutions of the form
b = ¢(2) expligx + s7) V = id(2) expligx + s7). (3.11)

Here the constantg (> 0) ands are the dimensionless wavenumber and growth rate of the
instability; the system is unstable if Re¢ > 0. With inertia neglected equations (3.4) and
(3.5) reduce to

(D> — E))i+ Exp=0 (3.12)
and
Esi 4+ (D> — E»¢ =0 (3.13)
where
E1= 1242 Ex= Pys Es= 4 Ey=38q"+2s —I?
n1 n1 As (3.14)

5 = (KS+ KS$)/KS (> 0) h=H/H, D = d/d?

and H; is the ‘classical’ Freedericksz transition threshold. For convenience the tildes will
now be dropped. The relevant boundary conditions (3.7) and (3.8) (for strong anchoring)
become

$(0) = ¢ () =v(0) =v(m) =0. (3.15)

4. Solution for strong anchoring

Here we employ a method of solution based on Fourier series, used by Stein [6] in an
analogous problem. We start by seeking a solutiorvfof the form

o.¢]
v= Zan sinnz 4.1)
n=1

where thea, are constant Fourier coefficients. This form wofsatisfies the boundary
conditions (3.15).

We multiply equations (3.12) and (3.13) k¥/x) sinnz, integrate by parts with respect
to z from z = 0 to z = &, and use (3.15) to simplify the results. This yields the linear
algebraic equations

—(n® + E1)a, + E2l, =0 (4.2)
Esa, — (n® + E4)I, =0 (4.3)
where

2 (7 .
1, = —/ ¢(z) sinnz dz.
T Jo

For a non-trivial solution of these equations we require
(n® + E1)(n” + E4) — E2E3 =0
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from which we deduce that the growth rate- s,(g) is given by

sn(q) = (n* + 01¢D) (h? — n? — ¢%8) /2[n* + (01 — 0)¢?] (4.4)
forn=123, ..., where
2
— B 20 =" (>0 (4.5)
2mAs N1

(the inequalities here being a consequence of (3.9)). Equation (4.4) gives the growsth rate
as a function of; for a given reduced magnetic field strengtland a given mode number

n; clearly s, is purely real for allg, so there is no temporal oscillation at the instability.
Also, it follows that

ds, (0) d?s5,(0)  h%c —n%c —n?s

_ 1.2 2 _ —

5,(0) = 5(h* —n%) d 0 Az 2 (4.6)
which shows that the smallest field for which s,(0) becomes positive isi = 1

(corresponding to the mode= 1); therefore the threshol, for a homogeneous;(= 0)
instability is given by

h,=1. @.7)

Thus a dynamical linear stability analysis confirms our previous statement, based on the
static theory, that the system is stable utfilexceeds the critical field/,.

Also, we note from (4.6) thaj = 0 is a stationary point of the, (¢) curve, a maximum
if 7 < h, and a minimum ifs > h,, whereh? = n?(oc + 8)/o. Thus ifh > h, thens,(q)
is larger for some non-zerg than it is forqg = 0, so a periodic transition (rather than a
homogeneous transition) must occur. This suggests that the thresholiffieida periodic
transition is the smallest value éf,, i.e.

1 1
§\?2 2n1h K5\ 12
! = <1+ ) = [1+ " 5(1+ 3)} . (4.8)
g N3 K3

The above argument, based on behaviour gear0, can be made more convincing, as
follows. First, using the fact that; > o (see the appendix), one may show thatAog h,
the s, (¢) curve has a single stationary point, a maximumgat 0, but forh > h, this
curve has two stationary points in> 0, a minimum atg = 0 and a (global) maximum at
q = gmax, Where

n o(ol—o)(hz—hz)T };
max = 111 n -1t . 4.9
! (01— 0)2 {[ " o1n?s (4:9)

Secondly, the difference between the growth ratgg) ands,(¢) of two modesn andn
is given by
sm(@) = su(q) = =3 (m® = n®) Qpun (4.10)
where
0q*[(o1 — 0)q® + h? — %3]
[m? + (01 — 0)g?|[n? + (o1 — 0)q?]
Now for these modes to be unstable equation (4.4) showshthat ¢28, in which case
O.. > 0. Therefore, for any value af, a ‘lower’ mode corresponds to a larger growth
rate; this means that when seeking a threshold field or a maximum growth rate we need

consider only the lowest mode, = 1. Thus overall we conclude that whén> h, the
n = 1 mode with wavenumbey = gmax Will have the largest growth rate, and that the

an =1+
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threshold field:{ is indeed as in (4.8). Given equation (4.7) and the inequalities (3.9) we
clearly have

B> (4.11)

so for field strengths that exceed we anticipate that a periodic rather than a homogeneous
transition will occur, the wavelength of the expected stripe pattern being proportional to
with n = 1.

qmax

5. Weak anchoring

In the event that there is weak anchoring at the two plane boundaries, the theory for nematics
suggests that the strong anchoring conditions given in (3.8) should be replaced by

¢—bp.=0  §+bp. =0 (5.1)
onz = 0 andz = &, respectively. Heré is an extrapolation length [10] and we assume that
this anchoring constant is the same for the two boundaries. Introducing the dimensionless
variables (3.10) and seeking periodic solutions of the form (3.11), we again reduce the

problem to that of solving the differential equations (3.12) and (3.13), but now subject to
the boundary conditions

#(0) — b1¢:(0) =0 ¢ () + b1gp. () =0 v(0) =v(m) =0 (5.2

whereb; = brr/d. Seeking a solution fov of the form (4.1) we again multiply (3.12) and
(3.13) by(2/m) sinnz and integrate from = 0 toz = &. This leads to the linear algebraic
system of equations

_(n2 + El)an + EZIn =0 (53)

Esa, — n®>+ ExI, + R, =0 (5.4)
where

R, = (2n/7){¢(0) — (=)@ ()} (5.5)
Eliminating 7, we obtain

an = R, E2/A, A, = (n® + E1)(n® + E4) — EzEs. (5.6)
From equations (3.13) and (4.¢)is given by

Eaza, Sinnz .
¢ = Z W2y E. + B1cosc(z — %n) + Bssinc(z — %n) (5.7)

n=1

where B; and B, are arbitrary constants, and = —E4. With equation (5.7) the boundary
conditions (5.2) yield two equations from which we obtain

1 —
Bi[cos(}em) — biesin(Gen)] = biEs Z PR E4 (5.8)
(n Odd)
o1 1 S ndn
By[sin(icm) + biccosiem)] = —biE3 ; s Ea (5.9)
(n gver)
However, from equations (5.5)—(5.7) we also have
1

AE Bicossem (n odd)

4y = -2 2 (5.10)

TAn | —Bpsinien (n even)
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which, with (5.8) and (5.9), leads to the consistency conditions

0 2
1 1 &
[l — bictan(scm)] = b1 E>E — 5.11
il 1ctan(zem)] 123;(n2+E4)An (5.11)
(n odd)
0 12
1 1
[l + biccot(5cm)] = b1 ELE ——. 5.12
arl 1ccot(zem)] = biEoEs3 ; 2L EDA, (5.12)
(n even

For given values of: and b1, these equations determine the growth ratess functions
of ¢ (or of g2, to be more precise) for different modes. Equations (5.11) and (5.12) are
associated with modes that are respectively symmetric and anti-symmetric about the plane
1
To determine thresholds we consider the behaviour gpear0. We expand for smalj
by writing

5 = so+52g2 4 - (5.13)

wheresy, sz, ... depend om: andb;. With only terms to Qg?) retained, equations (5.11)
and (5.12) become

b1g?(2s2 + 8)
1— biktan(imk) + —a {2tan(3nk) + wkseé(ink)}
8b10q2s0 s 1
= . 5.14
T ; (I’L2 _ k2)2 ( )
(n odd
b1g(2 )
1+ byk cot(Smk) — % {2conk) — wk cosed(ink)}
8b10¢%s0 & 1
= . 5.15
T ; (n2 — k2)2 ( )
(n ger)
where
k? = h? — 2s0. (5.16)
Equating terms of ordeg® in these respectively yields
biktan(3mk) = 1 bik cot(3mk) = —1. (5.17)
At marginal stability we havey = 0, and the field is: = 4’ (say), so thak = 4’ and
bih'tan(37h) =1 bih' cot(3mh) = —1. (5.18)

There are infinitely many solutior’s' of these equations, and the threshold figldfor a
homogeneous transition is the smallest positive such solution. One can show easily that
the values ofs’ from (5.18) satisfy 24/ < ' < 2M +1and M +1 < W < 2M + 2,
respectively, wherdf =0, 1, 2, .. .; clearly therefore the threshold field is associated with
the ‘lowest’ (M = 0) symmetric mode, and, is that solution of the equation

bih tan(3mhy) =1 (5.19)
that satisfies

0<h, <1 (5.20)
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In particular, in the limitb; — 0 we recover from (5.19) the expected strong-anchoring
thresholdi; = 1, and for very weak anchoring{ — oco) we have

n, ~ (2/mby)? — 0. (5.21)

These results are analogous to the corresponding ‘classical’ results for the case of a nematic
material with weak anchoring.

We now consider the possibility of a periodic transition whieexceeds:; and s is
non-zero. With the identities

> 1 T
2; (2 k22 = 163 {nk Se@(%nk) — 2tar(%nk)}
(1 odd)

> 1 b4

> 727 = 168 {mk coseé(3mk) + 2co( 3mk) — (8/mk)}
'oven

and, withb, eliminated by means of (5.17), from thed3) terms in (5.14) and (5.15) we

find that

o — (252 + 8)k? { fo(k) (n odd) (5.22)
20 fe(mk) (n even)
where
R T
Now at the margin of a periodic instability
s2=0 h="h" (say (5.24)

and from equations (5.16)—(5.18) we also have
k=n 250 = h? — (W)2. (5.25)
With equation (5.22) these lead to

W =1 {1+ 6/o) folnh))? @M < <2M +1) (5.26)

for the symmetric modes, and to

' = {1+ (5/0) fulrh')}? @M +1<H <2M +2) (5.27)

for the anti-symmetric modes (witf = 0, 1, 2, ... in both). Itis easy to show (for example,
simply by plotting f,(&§) and fe(§) over the appropriaté-domains) that the lowest value

hy of h” obtainable from (5.26) and (5.27) comes from (5.26) (that is, a symmetric mode)
with M = 0. Thus the threshold field is given by

8 [ mhe + sinmhy
o

1

2
h.=h1+ — . 0<h. <1 5.28
¢ C{ + nh/c—smnhg]} ( e (5.28)

with &, determined by (5.19) and (5.20). It is clear from this that equation (4.11) again
holds (it being known thai/c > 0). Thus wherm: exceeds the critical valug we expect
the resulting transition to be periodic.
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In the limit b, — O we recover from (5.28) the strong-anchoring result’fras given
in (4.8). Also ash; — oo we have

, 125\ [24nihs [ KS+ K5\ )2
Teo N3 K5
Incidentally, equation (5.28) may be written as
2 1
B h h, 2
0 = {(h;)2+[(” o) folr °)“ (5.30)
(o8 /g

and it is found that the quantity in square brackets here varies only weaklyajvith the
interval 0< A, < 1, decreasing monotonically from the value/2 (~ 1.216) ath, = 0

to the value 1 ah; = 1. Thus a crude but fairly accurate approximation to (5.28) over the
whole interval 0< b1 < 0 is

NI

h} ~ {(h)? + €(8/0)} e~ 1 (5.31)

6. Concluding remarks

We have obtained analytic expressions, as given by equations (4.7), (4.8), (5.19) and (5.28),
for the critical reduced threshold fields for the onset of both homogeneous and periodic
transient patterns in smectig,Qiquid crystals when either weak or strong anchoring obtains
at the boundaries. For a sudden application of a magnetic field across the sample we
anticipate stability for: < hg, a homogeneous transition faf < & < h{, and a periodic
transition forkz > h]. The results presented here parallel those found by Ciaponi and
Faetti [5] for an analogous problem in nematics.

Although the above quantitative analysis is applicable only for smeggiar@terials,
it is reasonable to anticipate that the qualitative behaviour described (that is, the existence
of a second thresholdl; in addition to the classical Freederickzs threshidldabove which
periodic transition patterns should be observed) will also be pertinent to smectic C materials.
Of course, since the analysis presented here is linear, we cannot say how the initial instability
will develop. However, the possibility of periodic transitions for sufficiently large magnetic
fields suggests that they may be of some significance in the effects of backflow in smectic C
liquid crystals. As a final observation, we note that in the linear analysis presented here,
there are no permeation effects in this problem for either smegjii®Csmectic C liquid
crystals.

Appendix. An inequality concerning the viscosity coefficients

By equations (3.9) we havwe > 0 ando; > 0. Using the viscous dissipation inequality
t;Dij — &' Ai — §/Ci > 0 (A1)
(see [8]) we show further that
o1 >0 > 0. (A.2)

Writing a = ¢ andc = j we haveA = A,j + Azk and C = —Ayi + Csk for some Ay,
Az, C3 (so thata, ¢, A and C automatically satisfy the equatiors.- ¢ = 0,a - A = 0,
c-C=0,andA-c+a-C =0). Then equation (A.1) gives

(210 + p1 + 2u2) DZ; + (2o + 13 + 2ua) D3y + 2(po + 2 + pa + ps) D3,
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+2110D11D22 + 2(jt0 + p2) D5 + 2(uo + 114) D23 + 4(h1 — A2 + A3)A2D12

+4h1A3D13 + 402C3D23 + 2(hs + As + Ae) A5 + 244A5 + 245C5 > 0
(A.3)
D33 having been eliminated by use of the incompressibility condifign+ Dy, + D33 = 0.
From the terms inD,3 and C3 in (A.3) we deduce that
As(lio + pa) > A3 (A.4)
However,o1 — o may be written as

01— 0 = [As(io + pa) — A%]/anks,

and this, with (3.9) and (A.4), leads to (A.2), as required.

Two further observations lend support to (A.2). First, if (A.2) wer satisfied then
the strong-anchoring growth ratg(g) for moder in (4.4) would become infinite when
g =n/(oc — o1)Y/?, which seems unphysical.

Secondly Carlssoet al [8] have noted that, at least for the case when the tilt angle
is small, there exist simple correspondences

o1 —> U3 ap — A2 — Asg a3 — A2+ Asg
(A.5)
o4 —> o as —> g — A2 ag —> a4t A2
between the viscositias,, ao, ..., ag of anematicmaterial and those of a smectic material

(see table Il of [8]). These correspondences may be combined with the known inequality
(03 — 02) (204 + a5 — ) > (a2 + at3)?

(see equation (35) of [11]) to give (A.4) again, and hence (A.2).
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