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Abstract. We present a dynamical study of the instabilities that ensue when a relatively large
magnetic field is applied suddenly across a sample of smectic liquid crystal held between parallel
plates. We consider the case when the smectic layers are initially aligned parallel to the bounding
plates, and the applied field is also parallel to the plates but normal to the initial average molecular
orientation within the layers. Our linearized dynamical analysis for this situation confirms the
prediction of static theory that there is a threshold field beyond which a Freedericksz transition
occurs. Additionally, however, it is shown here that there is a second threshold beyond which a
spatially periodic (rather than homogeneous) transition occurs, leading to a striped pattern; such
patterns are likely to be of concern in the construction of smectic display devices. For both
types of instability a bulk velocity (‘backflow’) is induced.

Both strong anchoring and weak anchoring are considered, and expressions are obtained for
the threshold fields and for the growth rates in the various cases. Attention is focussed on the
smectic CM phase, though analogous results should be valid for more general smectic phases.

1. Introduction

The commercial development of electro-optical devices [1] has provided strong motivation
for an extensive study of the director dynamics in smectic C liquid crystals over the
past decade. While earlier investigations assumed that there was no coupling between
flow and the director orientation, a recent paper by Leslieet al [2], which proposes a
constrained dynamic continuum theory for smectic C liquid crystals, has enabled more
recent studies to incorporate such a coupling into their analyses. In particular, backflow
effects upon the switching behaviour of surface stabilized ferroelectric liquid crystal cells and
the orientational relaxation in smectic C liquid crystals have been examined by Carlsson
et al [3] and Leslie and Blake [4], respectively. Both these investigations assumed that
orientation patterns after any transition are homogeneous in the directions parallel to the
cell plates. However, it is well known from experience in nematic liquid crystal theory
that such transition patterns may be periodic. In this event the initial growth rate of a
periodic transition is greater, and hence the switching time shorter, than that associated with
the corresponding homogeneous transition pattern. Hence our aim here is to investigate
the possible occurrence of periodic instabilities in smectic C liquid crystals in a relatively
simple experimental situation.

In this paper we examine an experimental arrangement similar to that considered by
Ciaponi and Faetti [5] for nematic liquid crystals. Here a smectic C liquid crystal is confined
between two large parallel plates with the smectic layers uniformly aligned everywhere
parallel to the plates and subjected to a relatively large uniform magnetic field suddenly
applied parallel to the smectic layers. After giving a brief outline of the continuum theory
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in section 2, we proceed to formulate the stability problem in section 3. Linearizing the
continuum equations about the static equilibrium state, we seek solutions for the velocity
and director fields that are spatially periodic; this reduces the mathematical problem to one
of solving a pair of coupled second-order linear differential equations subject to appropriate
boundary conditions. Adopting a Fourier series method of solution previously employed by
Stein [6], we show that there exist critical valuesh′

c andh′′
c of the (reduced) magnetic field

strengthh that mark the onset of homogeneous and periodic instabilities, respectively, in
smectic CM liquid crystals. We predict that (i) ifh < h′

c then the initial uniform alignment
is stable, (ii) if h′

c < h < h′′
c then a homogeneous transition will occur, and (iii) ifh > h′′

c
then a periodic transition will occur. Analytic expressions are derived for these threshold
fields, results for strong anchoring being given in section 4 and those for weak anchoring
in section 5. The paper concludes with a brief discussion of the results in section 6.

2. The continuum equations

In this section we briefly summarize the continuum equations governing the behaviour of
smectic C liquid crystals proposed by Leslieet al [2]. Assuming that the smectic layers
consist of uniform planes with a fixed angle of tiltα between the molecular alignment and
the layer normal, their constrained continuum theory introduces two orthonormal vectors to
describe the smectic layered configuration. One is the unit normala to the layers and the
other is a unit vectorc that is parallel to the layers and describes the direction of the tilt of
the molecular alignment. In a defect-free samplea andc must satisfy the constraints

a · a = c · c = 1 a · c = 0 curl a = 0. (2.1)

With the assumption that the material is incompressible the additional relevant equations
for determininga andc, together with the velocity vector fieldv, are, in Cartesian tensor
notation, the constraint

vi,i = 0 (2.2)

the linear momentum equation

ρv̇i = −p̃,i + g̃a
j aj,i + g̃c

j cj,i + t̃ij,j (2.3)

and the angular momentum equations

(
∂W

∂ai,j

)
,j

− ∂W

∂ai

+ g̃a
i + Ga

i + εijkβk,j + γ ai + κci = 0 (2.4)

and (
∂W

∂ci,j

)
,j

− ∂W

∂ci

+ g̃c
i + Gc

i + κai + τci = 0 (2.5)
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where
p̃ = −Hm + p + W t̃ij = t̃ s

ij + t̃ ss
ij

t̃ s
ij = µ0Dij + µ1apDa

paiaj + µ2(D
a
i aj + Da

j ai)

+µ3cpDc
pcicj + µ4(D

c
i cj + Dc

j ci) + µ5cpDa
p(aicj + aj ci)

+λ1(Aiaj + Ajai) + λ2(Cicj + Cjci) + λ3cpAp(aicj + aj ci)

+κ1(D
a
i cj + Da

j ci + Dc
i aj + Dc

j ai)

+κ2{apDa
p(aicj + aj ci) + 2apDc

paiaj }
+κ3{cpDc

p(aicj + aj ci) + 2apDc
pcicj } + τ1(Ciaj + Cjai)

+τ2(Aicj + Ajci) + 2τ3cpApaiaj + 2τ4cpApcicj

t̃ ss
ij = λ1(D

a
j ai − Da

i aj ) + λ2(D
c
j ci − Dc

i cj ) + λ3cpDa
p(aicj − aj ci)

+λ4(Ajai − Aiaj ) + λ5(Cjci − Cicj ) + λ6cpAp(aicj − aj ci)

+τ1(D
a
j ci − Da

i cj ) + τ2(D
c
j ai − Dc

i aj ) + τ3apDa
p(aicj − aj ci)

+τ4cpDc
p(aicj − aj ci) + τ5(Ajci − Aicj + Cjai − Ciaj )

g̃a
i = −2(λ1D

a
i + λ3cpDa

pci + λ4Ai + λ6cpApci

+τ2D
c
i + τ3apDa

pci + τ4cpDc
pci + τ5Ci)

g̃c
i = −2(λ2D

c
i + λ5Ci + τ1D

a
i + τ5Ai)

Da
i = Dijaj Dc

i = Dijcj 2Dij = vi,j + vj,i

Ai = ȧi − Wijaj Ci = ċi − Wijcj 2Wij = vi,j − vj,i .

(2.6)

Hereρ is the constant density,εijk is the alternator and a superposed dot indicates a material
time derivative. p, γ , τ and κ are arbitrary scalar functions andβ is an arbitrary vector
function arising from the constraints (2.1)–(2.2), whileGa andGc denote any generalized
external body forces acting andHm represents the energy per unit volume due to the presence
of any electric or magnetic field. Of particular importance to this paper are those forces
associated with an applied magnetic fieldH, which take the form

Ga = χa(H · n)H cosα Gc = χa(H · n)H sinα (2.7)

whereχa denotes the anisotropic part of the magnetic susceptibility (assumed constant), and
n denotes the average molecular orientation, withn = a cosα + c sinα. Also W is the
elastic stored-energy per unit volume, taking the form [2, 4]

2W = Ka
1 (ai,i)

2 + Kc
1(ci,i)

2 + Ka
2 (ciai,j cj )

2 + Kc
2ci,j ci,j + Kc

3ci,j cj ci,kck

+2Ka
3ai,i(cj aj,kck) + 2Kc

4ci,j cj ci,kak + 2Kac
1 ci,i(cj aj,kck) + 2Kac

2 ai,icj,j .

(2.8)

The theory thus provides 16 equations (2.1)–(2.5) to determine the sixteen variablesai , ci ,
vi , βi , p, γ , κ andτ .

3. Formulation of the problem

We consider a sample of smectic liquid crystal confined between two horizontal flat plates
of large extent, and we choose Cartesian coordinate axes so that the upper and lower plates
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occupy the planesz = d and z = 0, respectively. The material is taken to be stationary
initially, with the smectic layers parallel to the bounding plates and with the direction of
the tilt angle initially aligned uniformly in thex-direction. This state corresponds to the
simple static solution

v = 0 a = (0, 0, 1) c = (1, 0, 0) p = p0 (3.1)

of (2.1)–(2.5),p0 being a constant.
We wish to consider the effect of applying a magnetic field of the form

H = (0, H, 0) (3.2)

to this arrangement,H being a prescribed constant. It is well known from the static theory
that, when there is strong anchoring at the plates, the solution (3.1) becomes unstable if
H is increased quasi-statically through the critical valueHc = (Kc

2/χa)
1/2(π/d sinα), a

Freedericksz transition then occurring. Here, however, we are interested in the situation
when a magnetic field (3.2) withH > Hc is appliedsuddenlyacross the sample. We restrict
our attention to the dynamics associated with the onset of the ensuing instability, and seek
solutions of the form

v = (0, v̂(x, z, t), 0) c = (1, φ̂(x, z, t), 0) a = (0, 0, 1) (3.3)

with p̃ = p0 + p̂, where v̂, φ̂ and p̂ and their derivatives are sufficiently small that
their products and powers may be neglected. The constraints (2.1) and (2.2) are satisfied
identically, while a linearization of equations (2.3) and (2.5) yieldsτ = κ = 0 andp̂ = f (t),
together with the equations

ρv̂t = η1v̂zz + (κ1 − τ2 − τ1 + τ5)v̂xz + η2v̂xx + η3φ̂tx + (τ1 − τ5)φ̂tz (3.4)

Kc
2φ̂zz + 2Kc

4φ̂xz + (Kc
3 + Kc

2)φ̂xx − η3v̂x + (τ5 − τ1)v̂z − 2λ5φ̂t + χaH
2 sin2 αφ̂ = 0

(3.5)

where

2η1 = µ0 + µ2 − 2λ1 + λ4 2η2 = µ0 + µ4 − 2λ2 + λ5 η3 = λ2 − λ5. (3.6)

These equations are to be solved subject to the no-slip conditions

v̂(0) = v̂(d) = 0 (3.7)

and, for strong anchoring,

φ̂(0) = φ̂(d) = 0. (3.8)

The following inequalities (given in [7] and [8]) will prove useful later:

η1 > 0 η2 > 0 λ5 > 0 Kc
2 > 0 Kc

3 > 0. (3.9)

It is clear from equations (3.4), (3.5) that there is no solution for whichφ̂ andv̂ are either
purely even or purely odd functions about the planez = 1

2d. This lack of parity means that,
although progress could be made in solving the problem analytically, the results would be so
unwieldy that they would probably be difficult to interpret usefully. One could, of course,
rely on a numerical method of solution, but this is hampered by the fact that values for
the elastic and viscous material parameters have not yet been determined experimentally.
(Indeed observation of transition states provides one possible means of measuring such
parameters, so it would be useful to have available theoretical predictions with which the
experiments may feasibly be compared.) To make progress analytically and to get some
insight into the qualitative behaviour of smectic C materials we now restrict our attention to
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one particular subclass of these materials, namely the smectic CM liquid crystals described
by Brand and Pleiner [9]. For these materials the parametersKc

4, Kac
1 , Kac

2 , κi andτi (for
all values ofi) are identically zero, so equations (3.4), (3.5) are simplified considerably.

Introducing dimensionless variablesx̃, z̃, t̃ andV defined by

x = x̃
d

π
z = z̃

d

π
t = t̃λ5d

2

Kc
2π

2
v̂ = V πKc

2

λ5d
(3.10)

we now seek periodic solutions of the form

φ̂ = φ̃(z̃) exp(iqx̃ + st̃ ) V = iṽ(z̃) exp(iqx̃ + st̃ ). (3.11)

Here the constantsq (> 0) ands are the dimensionless wavenumber and growth rate of the
instability; the system is unstable if Re(s) > 0. With inertia neglected equations (3.4) and
(3.5) reduce to

(D2 − E1)ṽ + E2φ̃ = 0 (3.12)

and

E3ṽ + (D2 − E4)φ̃ = 0 (3.13)

where

E1 = η2

η1
q2 E2 = η3

η1
qs E3 = η3

λ5
q E4 = δq2 + 2s − h2

δ = (Kc
2 + Kc

3)/K
c
2 (> 0) h = H/Hc D ≡ d/dz̃

(3.14)

andHc is the ‘classical’ Freedericksz transition threshold. For convenience the tildes will
now be dropped. The relevant boundary conditions (3.7) and (3.8) (for strong anchoring)
become

φ(0) = φ(π) = v(0) = v(π) = 0. (3.15)

4. Solution for strong anchoring

Here we employ a method of solution based on Fourier series, used by Stein [6] in an
analogous problem. We start by seeking a solution forv of the form

v =
∞∑

n=1

an sinnz (4.1)

where thean are constant Fourier coefficients. This form ofv satisfies the boundary
conditions (3.15).

We multiply equations (3.12) and (3.13) by(2/π) sinnz, integrate by parts with respect
to z from z = 0 to z = π , and use (3.15) to simplify the results. This yields the linear
algebraic equations

−(n2 + E1)an + E2In = 0 (4.2)

E3an − (n2 + E4)In = 0 (4.3)

where

In := 2

π

∫ π

0
φ(z) sinnz dz.

For a non-trivial solution of these equations we require

(n2 + E1)(n
2 + E4) − E2E3 = 0
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from which we deduce that the growth rates = sn(q) is given by

sn(q) = (n2 + σ1q
2)(h2 − n2 − q2δ)

/
2[n2 + (σ1 − σ)q2] (4.4)

for n = 1, 2, 3, . . . , where

σ := η2
3

2η1λ5
(> 0) σ1 := η2

η1
(> 0) (4.5)

(the inequalities here being a consequence of (3.9)). Equation (4.4) gives the growth ratesn

as a function ofq for a given reduced magnetic field strengthh and a given mode number
n; clearly sn is purely real for allq, so there is no temporal oscillation at the instability.
Also, it follows that

sn(0) = 1
2(h2 − n2)

dsn(0)

dq
= 0

d2sn(0)

dq2
= h2σ − n2σ − n2δ

n2
(4.6)

which shows that the smallest fieldh for which sn(0) becomes positive ish = 1
(corresponding to the moden = 1); therefore the thresholdh′

c for a homogeneous (q = 0)
instability is given by

h′
c = 1. (4.7)

Thus a dynamical linear stability analysis confirms our previous statement, based on the
static theory, that the system is stable untilH exceeds the critical fieldHc.

Also, we note from (4.6) thatq = 0 is a stationary point of thesn(q) curve, a maximum
if h < hn and a minimum ifh > hn, whereh2

n = n2(σ + δ)/σ . Thus if h > hn thensn(q)

is larger for some non-zeroq than it is for q = 0, so a periodic transition (rather than a
homogeneous transition) must occur. This suggests that the threshold fieldh′′

c for a periodic
transition is the smallest value ofhn, i.e.

h′′
c =

(
1 + δ

σ

) 1
2

=
[

1 + 2η1λ5

η2
3

(
1 + Kc

3

Kc
2

)] 1
2

. (4.8)

The above argument, based on behaviour nearq = 0, can be made more convincing, as
follows. First, using the fact thatσ1 > σ (see the appendix), one may show that forh < hn

the sn(q) curve has a single stationary point, a maximum, atq = 0, but for h > hn this
curve has two stationary points inq > 0, a minimum atq = 0 and a (global) maximum at
q = qmax, where

qmax = n

(σ1 − σ)
1
2

{[
1 + σ(σ1 − σ)(h2 − h2

n)

σ1n2δ

] 1
2

− 1

} 1
2

. (4.9)

Secondly, the difference between the growth ratessm(q) andsn(q) of two modesm andn

is given by

sm(q) − sn(q) = − 1
2(m2 − n2)Qmn (4.10)

where

Qmn := 1 + σq2[(σ1 − σ)q2 + h2 − q2δ]

[m2 + (σ1 − σ)q2][n2 + (σ1 − σ)q2]
.

Now for these modes to be unstable equation (4.4) shows thath2 > q2δ, in which case
Qmn > 0. Therefore, for any value ofq, a ‘lower’ mode corresponds to a larger growth
rate; this means that when seeking a threshold field or a maximum growth rate we need
consider only the lowest mode,n = 1. Thus overall we conclude that whenh > hn the
n = 1 mode with wavenumberq = qmax will have the largest growth rate, and that the
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threshold fieldh′′
c is indeed as in (4.8). Given equation (4.7) and the inequalities (3.9) we

clearly have

h′′
c > h′

c (4.11)

so for field strengthsh that exceedh′′
c we anticipate that a periodic rather than a homogeneous

transition will occur, the wavelength of the expected stripe pattern being proportional to
q−1

max with n = 1.

5. Weak anchoring

In the event that there is weak anchoring at the two plane boundaries, the theory for nematics
suggests that the strong anchoring conditions given in (3.8) should be replaced by

φ̂ − bφ̂z = 0 φ̂ + bφ̂z = 0 (5.1)

on z = 0 andz = π , respectively. Hereb is an extrapolation length [10] and we assume that
this anchoring constant is the same for the two boundaries. Introducing the dimensionless
variables (3.10) and seeking periodic solutions of the form (3.11), we again reduce the
problem to that of solving the differential equations (3.12) and (3.13), but now subject to
the boundary conditions

φ(0) − b1φz(0) = 0 φ(π) + b1φz(π) = 0 v(0) = v(π) = 0 (5.2)

whereb1 = bπ/d. Seeking a solution forv of the form (4.1) we again multiply (3.12) and
(3.13) by(2/π) sinnz and integrate fromz = 0 to z = π . This leads to the linear algebraic
system of equations

−(n2 + E1)an + E2In = 0 (5.3)

E3an − (n2 + E4)In + Rn = 0 (5.4)

where

Rn := (2n/π){φ(0) − (−1)nφ(π)}. (5.5)

Eliminating In we obtain

an = RnE2/1n 1n := (n2 + E1)(n
2 + E4) − E2E3. (5.6)

From equations (3.13) and (4.1)φ is given by

φ =
∞∑

n=1

E3an sinnz

n2 + E4
+ B1 cosc(z − 1

2π) + B2 sinc(z − 1
2π) (5.7)

whereB1 andB2 are arbitrary constants, andc2 = −E4. With equation (5.7) the boundary
conditions (5.2) yield two equations from which we obtain

B1[cos( 1
2cπ) − b1c sin( 1

2cπ)] = b1E3

∞∑
n=1

(n odd)

nan

n2 + E4
(5.8)

B2[sin( 1
2cπ) + b1c cos( 1

2cπ)] = −b1E3

∞∑
n=1

(n even)

nan

n2 + E4
. (5.9)

However, from equations (5.5)–(5.7) we also have

an = 4E2n

π1n

{
B1 cos1

2cπ (n odd)

−B2 sin 1
2cπ (n even)

(5.10)
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which, with (5.8) and (5.9), leads to the consistency conditions

1
4π [1 − b1c tan( 1

2cπ)] = b1E2E3

∞∑
n=1

(n odd)

n2

(n2 + E4)1n

(5.11)

1
4π [1 + b1c cot( 1

2cπ)] = b1E2E3

∞∑
n=1

(n even)

n2

(n2 + E4)1n

. (5.12)

For given values ofh and b1, these equations determine the growth ratess as functions
of q (or of q2, to be more precise) for different modes. Equations (5.11) and (5.12) are
associated with modes that are respectively symmetric and anti-symmetric about the plane
z = 1

2π .
To determine thresholds we consider the behaviour nearq = 0. We expand for smallq

by writing

s = s0 + s2q
2 + · · · (5.13)

wheres0, s2, . . . depend onh andb1. With only terms to O(q2) retained, equations (5.11)
and (5.12) become

1 − b1k tan
(

1
2πk

) + b1q
2(2s2 + δ)

4k

{
2 tan

(
1
2πk

) + πk sec2
(

1
2πk

)}
= 8b1σq2s0

π

∞∑
n=1

(n odd)

1

(n2 − k2)2
(5.14)

1 + b1k cot
(

1
2πk

) − b1q
2(2s2 + δ)

4k

{
2 cot

(
1
2πk

) − πk cosec2
(

1
2πk

)}
= 8b1σq2s0

π

∞∑
n=1

(n even)

1

(n2 − k2)2
(5.15)

where

k2 = h2 − 2s0. (5.16)

Equating terms of orderq0 in these respectively yields

b1k tan
(

1
2πk

) = 1 b1k cot
(

1
2πk

) = −1. (5.17)

At marginal stability we haves0 = 0, and the field ish = h′ (say), so thatk = h′ and

b1h
′ tan

(
1
2πh′) = 1 b1h

′ cot
(

1
2πh′) = −1. (5.18)

There are infinitely many solutionsh′ of these equations, and the threshold fieldh′
c for a

homogeneous transition is the smallest positive such solution. One can show easily that
the values ofh′ from (5.18) satisfy 2M 6 h′ 6 2M + 1 and 2M + 1 6 h′ 6 2M + 2,
respectively, whereM = 0, 1, 2, . . .; clearly therefore the threshold field is associated with
the ‘lowest’ (M = 0) symmetric mode, andh′

c is that solution of the equation

b1h
′
c tan

(
1
2πh′

c

) = 1 (5.19)

that satisfies

0 6 h′
c 6 1. (5.20)
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In particular, in the limitb1 → 0 we recover from (5.19) the expected strong-anchoring
thresholdh′

c = 1, and for very weak anchoring (b1 → ∞) we have

h′
c ∼ (

2/πb1
) 1

2 → 0. (5.21)

These results are analogous to the corresponding ‘classical’ results for the case of a nematic
material with weak anchoring.

We now consider the possibility of a periodic transition whenh exceedsh′
c and s0 is

non-zero. With the identities
∞∑

n=1
(n odd)

1

(n2 − k2)2
= π

16k3

{
πk sec2

(
1
2πk

) − 2 tan
(

1
2πk

)}
∞∑

n=1
(n even)

1

(n2 − k2)2
= π

16k3

{
πk cosec2

(
1
2πk

) + 2 cot
(

1
2πk

) − (
8/πk

)}
and, withb1 eliminated by means of (5.17), from the O(q2) terms in (5.14) and (5.15) we
find that

s0 = (2s2 + δ)k2

2σ

{
fo(πk) (n odd)

fe(πk) (n even)
(5.22)

where

fo(ξ) = ξ + sinξ

ξ − sinξ
fe(ξ) = ξ − sinξ

ξ + sinξ − 4ξ−1(1 − cosξ)
. (5.23)

Now at the margin of a periodic instability

s2 = 0 h = h′′ (say) (5.24)

and from equations (5.16)–(5.18) we also have

k = h′ 2s0 = h2 − (h′)2. (5.25)

With equation (5.22) these lead to

h′′ = h′{1 + (δ/σ )fo(πh′)
} 1

2 (2M 6 h′ 6 2M + 1) (5.26)

for the symmetric modes, and to

h′′ = h′{1 + (δ/σ )fe(πh′)
} 1

2 (2M + 1 6 h′ 6 2M + 2) (5.27)

for the anti-symmetric modes (withM = 0, 1, 2, . . . in both). It is easy to show (for example,
simply by plottingfo(ξ) and fe(ξ) over the appropriateξ -domains) that the lowest value
h′′

c of h′′ obtainable from (5.26) and (5.27) comes from (5.26) (that is, a symmetric mode)
with M = 0. Thus the threshold fieldh′′

c is given by

h′′
c = h′

c

{
1 + δ

σ

[
πh′

c + sinπh′
c

πh′
c − sinπh′

c

]} 1
2

(0 6 h′
c 6 1) (5.28)

with h′
c determined by (5.19) and (5.20). It is clear from this that equation (4.11) again

holds (it being known thatδ/σ > 0). Thus whenh exceeds the critical valueh′′
c we expect

the resulting transition to be periodic.
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In the limit b1 → 0 we recover from (5.28) the strong-anchoring result forh′′
c, as given

in (4.8). Also asb1 → ∞ we have

h′′
c →

(
12δ

π2σ

) 1
2

=
{

24η1λ5

π2η2
3

(
Kc

2 + Kc
3

Kc
2

)} 1
2

. (5.29)

Incidentally, equation (5.28) may be written as

h′′
c =

{
(h′

c)
2 + δ

σ

[(
πh′

c

)2
fo(πh′

c)

π2

]} 1
2

(5.30)

and it is found that the quantity in square brackets here varies only weakly withh′
c in the

interval 06 h′
c 6 1, decreasing monotonically from the value 12/π2 (≈ 1.216) ath′

c = 0
to the value 1 ath′

c = 1. Thus a crude but fairly accurate approximation to (5.28) over the
whole interval 06 b1 < ∞ is

h′′
c ≈ {

(h′
c)

2 + ε(δ/σ )
} 1

2 ε ≈ 1. (5.31)

6. Concluding remarks

We have obtained analytic expressions, as given by equations (4.7), (4.8), (5.19) and (5.28),
for the critical reduced threshold fields for the onset of both homogeneous and periodic
transient patterns in smectic CM liquid crystals when either weak or strong anchoring obtains
at the boundaries. For a sudden application of a magnetic field across the sample we
anticipate stability forh < h′

c, a homogeneous transition forh′
c < h < h′′

c, and a periodic
transition for h > h′′

c. The results presented here parallel those found by Ciaponi and
Faetti [5] for an analogous problem in nematics.

Although the above quantitative analysis is applicable only for smectic CM materials,
it is reasonable to anticipate that the qualitative behaviour described (that is, the existence
of a second thresholdh′′

c in addition to the classical Freederickzs thresholdh′
c above which

periodic transition patterns should be observed) will also be pertinent to smectic C materials.
Of course, since the analysis presented here is linear, we cannot say how the initial instability
will develop. However, the possibility of periodic transitions for sufficiently large magnetic
fields suggests that they may be of some significance in the effects of backflow in smectic C
liquid crystals. As a final observation, we note that in the linear analysis presented here,
there are no permeation effects in this problem for either smectic CM or smectic C liquid
crystals.

Appendix. An inequality concerning the viscosity coefficients

By equations (3.9) we haveσ > 0 andσ1 > 0. Using the viscous dissipation inequality

t̃ s
ijDij − g̃a

i Ai − g̃c
i Ci > 0 (A.1)

(see [8]) we show further that

σ1 > σ > 0. (A.2)

Writing a = i andc = j we haveA = A2j + A3k andC = −A2i + C3k for someA2,
A3, C3 (so thata, c, A and C automatically satisfy the equationsa · c = 0, a · A = 0,
c · C = 0, andA · c + a · C = 0). Then equation (A.1) gives

(2µ0 + µ1 + 2µ2)D
2
11 + (2µ0 + µ3 + 2µ4)D

2
22 + 2(µ0 + µ2 + µ4 + µ5)D

2
12
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+2µ0D11D22 + 2(µ0 + µ2)D
2
13 + 2(µ0 + µ4)D

2
23 + 4(λ1 − λ2 + λ3)A2D12

+4λ1A3D13 + 4λ2C3D23 + 2(λ4 + λ5 + λ6)A
2
2 + 2λ4A

2
3 + 2λ5C

2
3 > 0

(A.3)

D33 having been eliminated by use of the incompressibility conditionD11+D22+D33 = 0.
From the terms inD23 andC3 in (A.3) we deduce that

λ5(µ0 + µ4) > λ2
2. (A.4)

However,σ1 − σ may be written as

σ1 − σ = [
λ5(µ0 + µ4) − λ2

2

]/
2η1λ5,

and this, with (3.9) and (A.4), leads to (A.2), as required.
Two further observations lend support to (A.2). First, if (A.2) werenot satisfied then

the strong-anchoring growth ratesn(q) for moden in (4.4) would become infinite when
q = n/(σ − σ1)

1/2, which seems unphysical.
Secondly Carlssonet al [8] have noted that, at least for the case when the tilt angleα

is small, there exist simple correspondences

α1 → µ3 α2 → λ2 − λ5 α3 → λ2 + λ5

α4 → µ0 α5 → µ4 − λ2 α6 → µ4 + λ2

(A.5)

between the viscositiesα1, α2, . . . , α6 of a nematicmaterial and those of a smectic material
(see table II of [8]). These correspondences may be combined with the known inequality

(α3 − α2)(2α4 + α5 − α6) > (α2 + α3)
2

(see equation (35) of [11]) to give (A.4) again, and hence (A.2).
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